

HIGH-GRADE COPPER MINERALISATION INTERSECTED IN DRILLING AT FIERY CREEK PROJECT

Highlights

- Maiden drilling program completed and results received from the priority Piper Prospect
 at the Fiery Creek Copper Project in the Mt Isa copper belt, northern Queensland
- Drilling intersected **high-grade copper in a discrete shear and wide zones** of anomalous copper sulphide mineralisation. **Highlight results**:
 - o 2m @ 1.67%Cu from 74m in drillhole FCRC001
 - o 4m @ 0.28% Cu from 83m including 1m @ 0.89% Cu from 83m in drillhole FCRC003
 - o 7m @ 0.11% Cu from 87m in drillhole FCRC002
 - o 4m @ 0.17% Cu from 115m in drillhole FCRC008
 - o 1m @ 0.34% Cu from 29m in drillhole FCRC008
 - Drilling comprised 6 reverse circulation (RC) holes for a total of 858m and successfully targeted copper mineralisation at depth, below coincident high-grade surface samples and two IP conductors
- Results confirm mineralised breccia zones increasing at depth and visual chalcopyrite; also indicate the presence of the Lady Loretta Formation, host of high-grade base metal deposits in the region including Glencore's Lady Loretta zinc-lead-silver mine
- Fiery Creek has had no systematic exploration for more than 20 years and hosts numerous untested structurally controlled targets, representing significant discovery potential
- **Next Steps:** reprocess geophysical IP data and construct a 3D structural and geological model to help refine targets for follow-up drilling

Aruma Resources Limited (ASX: AAJ) (Aruma or the Company) is pleased to announce highgrade copper intersections from its maiden drilling program at the Fiery Creek Copper Project in the Mt Isa copper belt, in northern Queensland.

The results come from Aruma's first-phase reverse circulation (RC) drilling program at the priority Piper Prospect within the Fiery Creek Project. The program has returned **high-grade copper up to**1.67% Cu along with **broad zones of anomalous copper mineralisation of up to 7 metres Cu**.

The drilling program consisted of six RC holes for a total of 858 metres, and was designed to target anomalous copper mineralisation below enriched supergene high-grade surface samples, coincident with two high-impact Induced Polarisation (IP) conductors and historical drill results from the Piper target¹.

Highlight results from Aruma's first-phase drilling include:

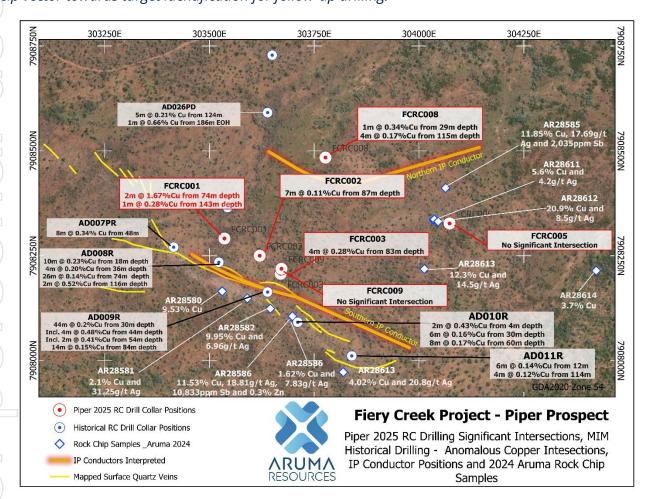
- 2m @ 1.67%Cu from 74m in drillhole FCRC001
- 4m @ 0.28% Cu from 83m in drillhole FCRC003 including;
- 1m @ 0.89% Cu from 83m
- 7m @ 0.11% Cu from 87m in drillhole FCRC002
- 4m @ 0.17% Cu from 115m in drillhole FCRC008
- 1m @ 0.34% Cu from 29m in drillhole FCRC008

See Tables 1 and 2 for drillhole summary details and significant intersections from Aruma's first-phase drilling.

Previous drilling was conducted at the Piper Prospect by MIM Exploration Pty Ltd (MIM) between 1991 and 1996. This drilling returned multiple intersections of wide zones of copper. The results were reported by Aruma in ASX announcement of 25 March 2025, and further enhanced Piper as a first priority drill-ready target for Aruma at the Fiery Creek Project².

Highlight results from historic drilling included:

- 44m at 0.2% Cu from 30m in AD009R
- 26m at 0.14% Cu from 74m in AD008R
- 14m at 0.15% Cu from 84m in AD009R
 - 10m at 0.23% Cu from 18m in AD008R
- 8m at 0.34% Cu from 48m in AD007PR


See Figure 1 for a plan view showing significant intersections from Aruma's first-phase drilling program and its sampling results, along with historic drilling results and the two IP conductors defined from Aruma's geophysical survey program.

Aruma Resources managing director Grant Ferguson said:

"We are very pleased with the results of our first-phase drilling program at the Fiery Creek Project. The program has successfully targeted copper sulphide mineralisation at depth, intersecting high grade copper in discrete and wide zones of anomalous copper, validating our exploration model for the Project.

The discovery of anomalous copper mineralisation associated with the Lady Loretta and Esperanza Formations, which are cornerstone of the region's mineral endowment, underscores the potential for the Project area to host a highly prospective mineralised system within the prolific Mt Isa copper province. We now plan to reprocess existing IP survey data and construct a 3D structural and geological model to help vector towards target identification for follow-up drilling."

Figure 1: Plan view of Piper Prospect showing significant intersections from Aruma's 2025 drilling, and historical drilling intersections and sampling results³. Southern and northern IP conductors are also shown.

Drilling results commentary

Aruma's maiden drilling program and its recent geophysical survey program at the Fiery Creek Project represent the first systematic exploration campaign at the Project in over 20 years.

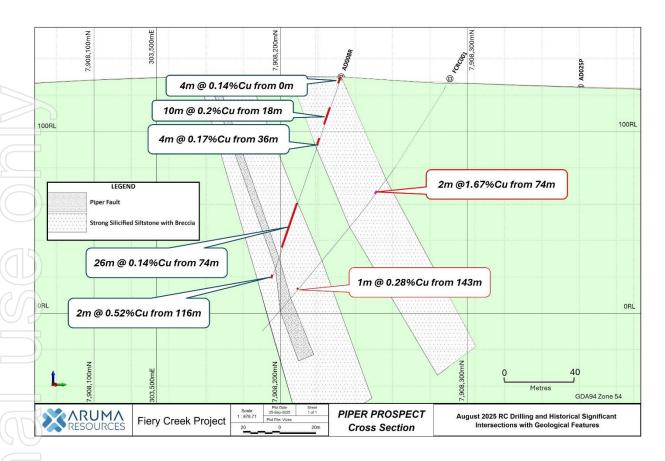
The historical drilling results from MIM in the 1990's and Aruma's recent IP survey indicated two zones of electrical conductivity (Northern conductor and Southern Conductor) which may be associated with a deeper source of copper sulphide mineralisation, as indicated by the broad copper intersections in the historical drilling, or pyritic black shales^{1, 2}.

Southern conductor: structural complexity and mineralisation

The Southern conductor at Piper was assumed to be related to the north dipping Piper Fault structure which extends at surface over a strike of 700 metres. Four RC holes were completed by Aruma to depths of up to 174 metres, targeting a 200-metre section of this structure at depth.

These structures are interpreted as potentially tapping deeper mineralised systems. Aruma plans to assess the association between mineralisation and a gravity anomaly in this area.

The drill results indicate discrete zones of copper mineralisation, including a high-grade intersection of 2m @ 1.67% Cu from 74 metres in drillhole FCRC001, within stacked quartz breccia zones which are thought to represent the down-dip extension of the copper mineralised zones indicated in the historical drilling.


A broad zone of seven metres of copper was also intersected in the area of the southern conductor, in drillhole FCRC002. In addition, the wide zones of copper reported in MIM's historic drilling are also located proximal to the southern conductor (Figure 2).

It is interpreted that the historical broad zones of copper are related to preferential alteration and mineralisation associated with proximity to the main Piper Fault structure.

The Piper Fault is represented by silicified and brecciated dolomitic siltstones which have undergone supergene mineralisation. It is interpreted to trend at right angles to the north striking, tightly folded and complexly faulted structure, associated with the interplay of the Lady Lorretta and Esperanza Formations.

These formations consist of shales and siliceous siltstones which host several significant copper (Lady Annie) and lead-zinc-silver (Lady Loretta) mining operations in the Mt Isa district.

Figure 2: Cross section at Piper Prospect showing Aruma drilling intersections and historical drilling intersections

Northern conductor

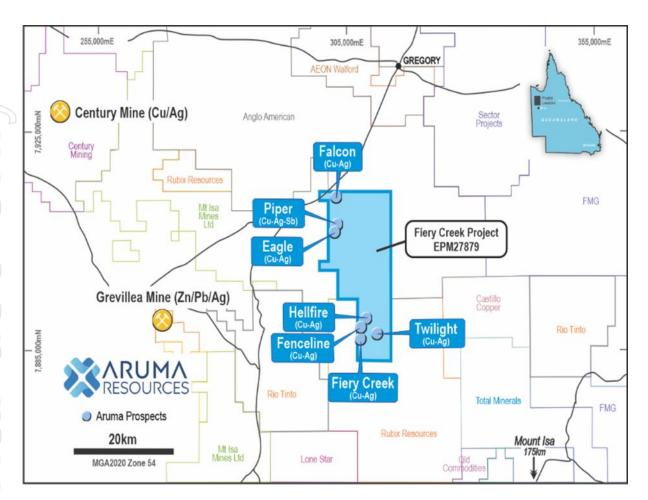
The Northern conductor was highlighted for drilling due to the strength of the conductor. Aruma's drilling returned narrow breccia zones of anomalous copper within a larger body of graphitic pyritic shale.

The graphitic black shales coincident with a strong IP anomaly is interpreted as the Lady Loretta Formation. This formation is a proven host for high-grade base metal deposits within the region, including Glencore's high-grade Lady Loretta zinc-lead-silver mine.

The most significant intersections from Aruma's drilling were two discrete zones of quartz brecciation containing fine-grained pyrite and chalcopyrite, with a best copper grade of 0.34% Cu over 1m from 29m down hole and 0.17% Cu over 4m from 115m downhole in FCRC008.

The presence of the pyritic shale is assessed as the most likely source of the conductor. However, the area remains significantly under-explored and its complex geology and favourable host rocks continues to underscore the Project's potential to host significant base metal mineralisation.

Figure 3: Aruma's RC drilling at the Piper Prospect, Fiery Creek project


In addition, the presence of the Lady Loretta Formation presents an exciting opportunity for concealed copper, zinc, and lead mineralisation elsewhere within the Project. Further comparative geophysical interpretation and analysis of the drilling is being conducted to assist in further targeting.

Next steps

Aruma's first-stage drilling results at Fiery Creek confirm its potential to host significant base metal mineralisation, particularly within the Lady Loretta Formation, which is a cornerstone of the region's mineral endowment. The Company plans to advance its exploration of the Project through:

- **Geophysical Reprocessing:** Reprocessing IP survey data to incorporate new drilling insights, focusing on identifying copper, zinc and lead mineralisation zones.
- **3D Geological Modelling:** Constructing a 3D structural and geological model to enhance target identification and refine existing prospects, leveraging new drilling data.
- **Future Drilling:** Evaluating a second RC drilling program to test the extent of mineralisation in both the Northern and Southern Conductors.

Figure 4: Fiery Creek Project location showing priority Piper, Eagle and Fiery Creek Prospects plus other yet be tested prospects

This announcement has been authorised for release by the Board of Aruma Resources Ltd.

ENDS

For further information, please contact:

Grant Ferguson

Managing Director

Aruma Resources Limited

Telephone: +61 8 9321 0177

E: info@arumaresources.com

About Aruma Resources

Aruma Resources Limited (ASX: AAJ) is an ASX-listed minerals exploration company focused on the exploration and development of a portfolio of prospective projects in high-demand commodities – copper and uranium - in world-class mineral belts, in South Australia and Queensland. It also holds gold, lithium and REE prospective projects in Western Australia.

Referenced ASX announcements in this announcement:

- 1. AAJ ASX Announcement 6 August 2025: Aruma Commences Maiden Drilling Program at Fiery Creek Copper Project in Mt Isa Copper Belt
- 2. AAJ ASX Announcement 25 March 2025: Multiple wide, near-surface historic copper drill intersections at Fiery Creek Project
- 3. ASX Announcement Aruma Resources "High Grade Copper Assays at Fiery Creek Project", 29 July 2024

Table1: Piper Prospect Phase 1 Drillhole Summary Details

Hole_ID	East	North	RL	Depth	Dip	Azimuth
FCRC001	303536	7908291	129	174	-60	185
FCRC002	303620	7908250	125	150	-65	204
FCRC003	303670	7908207	153	174	-70	187
FCRC005	304073	7908327	167	72	-60	290
FCRC008	303777	7908484	150	144	-60	188
FCRC009	303672	7908219	130	144	-65	276

Down hole surveys are conducted on all holes drilled for all RC drill holes and utilise a gyro down hole tool. Geodetic datum referenced in Table 1 below GDA94-54

Table 2: Significant Copper Assay Intersections from Piper Prospect Phase 1 Drilling Program

Hole_ID	Depth From (m)	Depth To (m)	Intercept
FCRC001	74	76	2m @ 1.67% Cu
FCRC001	143	144	1m @ 0.28% Cu
FCRC002	87	94	7m @ 0.11% Cu
FCRC003	83	87	4m @ 0.28% Cu
FCRC008	29	30	1m @ 0.34%Cu
FCRC008	115	119	4m @ 0.17% Cu

Criteria: 500ppm Cu cut-off, minimum 1m interval, maximum internal waste 1m.

Figure 5: Aruma Resources project portfolio.

Competent person statement

The information in this release that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Grant Ferguson who is a Fellow of the Australian Institute of Geoscience (AIG). Mr Ferguson is Managing Director and a full-time employee of the Company. Mr Ferguson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserve'. Mr Ferguson consents to the inclusion in the release of the matters based on his information in the form and context in which it appears. All exploration results that have been reported previously and released to ASX are available to be viewed on the Company website www.arumaresurces.com. The Company confirms it is not aware of any new information that materially affects the information included in the original announcement. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original announcements.

Forward Looking Statement

Certain statements contained in this document constitute forward looking statements. Such forwardlooking statements are based on a number of estimates and assumptions made by the Company and its consultants in light of experience, current conditions and expectations of future developments which the Company believes are appropriate in the current circumstances. These estimates and assumptions while considered reasonable by the Company are subject to known and unknown risks, uncertainties and other factors which may cause the actual results, achievements and performance of the Company to be materially different from the future results and achievements expressed or implied by such forward-Tooking statements. Forward looking statements include, but are not limited to, statements preceded by words such as "planned", "expected", "projected", "estimated", "may", "scheduled", "intends", "anticipates", "believes", "potential", "could", "nominal", "conceptual" and similar expressions. There can be no assurance that Aruma plans to develop exploration projects that will proceed with the current expectations. There can be no assurance that Aruma will be able to conform the presence of Mineral Resources or Ore Reserves, that any mineralisation will prove to be economic and will be successfully developed on any of Aruma's mineral properties. Investors are cautioned that forward looking information is no guarantee of future performance and accordingly, investors are cautioned not to place undue reliance on these forward-looking statements

JORC Code, 2012 Edition – Table 1

Fiery Creek Project – Piper Prospect RC Phase 1 Drilling Program

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Results reported here are not being used towards Mineral Resource Estimate or Reserve calculations.

Criteria JORC Code explanation	Commentary
 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	The Piper Phase 1 Exploration Program RC drilling program reported here consists of 6 holes drilled for 858 m of reverse circulation (RC) drilling completed in August 2025. The program was designed to the multiple induced polarisation (IP) geophysical targets generated by a ground IP and survey complete Q4 2024 supported by field sampling, structural interpretations, and historical drilling results ² . Sample Representivity RC drilling sample collection during the drilling process was completed at 1m intervals using industry standard techniques, including face sampling drill bit and an on-board cone splitted. The bulk of the sample was collected in a plastic bag whilst the split, a representative samp for analysis, was collected in a calico bag. Chip samples are collected from the drill cuttings, sieved and washed to assist geological logging and then put into chip trays as a geological record. Exploration results are based on industry best practices, including sampling, assay method and appropriate quality assurance quality control (QAQC) measures. RC drill chips were collected at 1m intervals via a cone splitter in pre-numbered calico bag. The quantity and quality of sample was monitored by the geologist during drilling. An aluminium scoop was used to take a representative sample from each 1m plastic bag and combined into a 3m composite sample which was submitted to the lab in a prenumbere calico bag. The individual 1m split samples which had been split into calico bags during drilling were also collected and taken to the lab for analysis. RC samples of about 3kg were sent to the ALS laboratory in Mt Isa, where they were pulverised to at least 85% passing 75 microns. The pulp sample is then split to produce a sample for analysis. At the Lab the initial composite samples were split and a 500g subset pulverised and analyse for Cu and multi element pathfinder elements using Aqua Regia with ICP-MS finish (Al code:ME-MS41). Anomalous composite results with values over 500ppm Cu were the selected for indivi

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 The technique used was the reverse circulation technique (RC). The drilling was completed by Gas Field Drilling Services Pty Ltd, using Rig14, a Hydco 1200H multi-purpose truck mounted RC drill rig with auxiliary compressor and booster mounted on a support truck. Holes were drilled from 60 to 70 degrees towards azimuths which give best approximation of right angle to strike. RC drilling (2025) was conducted using a 5 1/4" face sampling hammer.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC sample recovery is monitored by the field geologist. Low sample recoveries are record on the drill log. The cyclone and splitter were cleared at the end of each rod to minimise blockages and to obtain representative recoveries. The geologist is present during drilling to monitor the sample recovery process. There were no significant sample recovery issues encountered during the drilling program. Assessment of bias – Recoveries of the RC samples were consistently high.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All logging is completed according to industry best practice. RC chips are logged at 1m intervals using a representative sample of the drill chips. Geological logging has been completed by a qualified geologist for the entire length of the hole, recording lithology, oxidation, alteration, veining and mineralisation containing both qualitative and quantitative fields. Key information such as metadata, collar and survey information is also recorded. Logging records include lithology, alteration, mineralisation, colour and structure. Small representative samples of RC chips for each 1m interval were collected, labelled, an placed in plastic 20-slot RC chip trays, for future reference. Chip trays are also photographed.
Sub-sampling echniques and sample oreparation	 If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	 For all sample types, the nature, quality and appropriateness of the sample preparation technique is considered adequate as per industry best practice. RC samples of about 3-4kg are collected directly into a pre labelled calico bag from the rig mounted cyclone at 1m intervals using a rig mounted inbuilt cone splitter and , with the remaining 1m material collected in a plastic bag. Composite sampling over 3m intervals wused to determine anomalous intervals worthy of further sampling and was undertaken

Criteria	JORC Code explanation	Commentary
	 Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	using an aluminium scoop . Representative samples were collected from the 1m plastic bags and composited into a 3m sample which was submitted to the lab composite sampling over 3 metre intervals otherwise, using a scoop. the sample size is appropriate for the style of mineralisation and the grain size of the material being sampled. RC samples are dried at the laboratory and then a 500g split taken pulverised and pulverised to at least 85% passing 75 microns.
	The nature, quality and appropriateness of the	 All samples were submitted for analysis to the ALS Laboratories sample preparation facility in Mt Isa, QLD Australia. ALS Mt Isa is an ISO certified commercial laboratory for industry standard preparation and analysis.
	 assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld 	 Sample preparation comprised weighing, drying and splitting a 500g subset and for pulverisation prior to analysis due to ALS in Mt Isa only using LM2 mills which cannot process the larger 3kg sample size.
Quality of assay data and laboratory	ity of XRF instruments, etc, the parameters used in y data determining the analysis including instrument make and model, reading times, calibrations	 A small sample (0.5g) of the pulverised material pulp sample(s) was digested in Aqua-Regia which was then analysed for 41 elements including Cu using mixture of four acids including Hydrofluoric, Nitric, Hydrochloric and Perchloric acids for a total digest.
tests		 Analysis of 2024 RC drilling; Cu, Pb, Ag, Bi, Co, Ni, Sb have been determined by Inductively Coupled Plasma (ICP) Mass Spectrometry (ICP-MS)(MS-OES).
		 ALS Intertek undertakes quality control procedures including Certified Refence Material (CRM), blanks, standards, pulverisation repeat assays, weights and sizing.
		 A CRM, duplicate or blank is inserted every 20 samples in the field.
		 The Company used three ranges of copper CRM's from Melbourne based ORE Research & Exploration Pty Ltd "OREAS"
Verification of	sampling and The use of twinned holes.	 All significant intercepts are reviewed and confirmed by at least two senior personnel before release to the market.
assaying		 No adjustments are made to the raw assay data.
	procedures, data verification, data storage (physical and electronic) protocols.	 All data are validated using the QAQCR by senior staff members
		12

Criteria	JORC Code explanation	Commentary
	Discuss any adjustment to assay data.	
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All drill hole collars were located with a hand- held GPS with an accuracy of +/-5m. Downhole surveys were taken using a solid-state gyro to maintain strong control of drill direction. Survey co-ordinates: GDA94 MGA Zone 54.
		 All drill hole collars were located with a hand- held GPS with an accuracy of +/-5m. Downhole surveys were taken using An IMDEX Omnix-42 north searching solid state gyrd to maintain control of drill direction at selected depths where required and at the end of hole.
Data spacing	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Survey co-ordinates: GDA94 MGA Zone 54. Data spacing and distribution used to determine geological continuity is dependent on the deposit type and style under consideration.
and distribution		 As this drilling program is the first stage exploration, the drilling density is viewed as sufficient for the identification of potential mineralisation, however, potentially too early ascertain geological and grade continuity.
5		 For mineral resource estimations, grades are estimated on composited assay data. The composite length is chosen based on the statistical average, usually 1m. Sample compositing is never applied to drilling interval calculations reported to market. A sample length weighted interval is calculated as per industry best practice.
		No Mineral Resource or Ore Reserve estimations are being reported.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Orientation of sampling is as unbiased as possible based on the dominating mineralised structures and interpretation of the deposit geometry based on surface mapping. The orientations are more variable depending on the nature of the drill target. If structure and geometry is not well understood, sampling is orientated to be perpendicular to the interpreted IP conductor's positions and in general strike of stratigraphy and/or regional structure.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	 All samples remain in the custody of company geologists and are fully supervised from point of field collection to laboratory drop-off.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None yet undertaken for this dataset

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to 	 The Fiery Creek Project is located within EPM27879 ~200km north of Mt Isa, and south of the small township of Gregory. EPM28271 is ~320km2 The registered holder of the tenement is RAB Resources Pty Ltd which is a wholly owned subsidiary of Aruma Resources Limited. Aruma has agreements in place with the Native Title holders the Waanyi Native Title Corporation RNTBC and the Paraway Pastoral Company Limited who are the operators of Gregory Downs Pastoral Station on which the drilling occurred.
	operate in the area.	 To the Company's current knowledge, there are no known impediments to Aruma being able to explore the Fiery Creek project.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Aruma Resources have completed a search of historical open file reports available from GSQ to compile an exploration history.
parties		 A mix of gold, copper, lead and zinc exploration has been undertaken in the region over the past 60 years. The historical exploration work has included regional stream and soil sampling, rock chip programs, as well as geophysical surveys which have generated indications of copper and zinc at surface including a number of target areas around the current Piper Prospect.
		 In 1992 MIM completed a number of reconnaissance soil and rock chip sampling programs which defined an elongate east-west Cu anomaly surrounding the continuously outcropping silicified Piper Fault. The Piper Fault was identified from rock chip sampling by Shell in the 1980's and MIM completed IP and RC drilling in 1993 around the Piper Fault, the results of which

Criteria	JORC Code explanation	Commentary
		formed the basis of current exploration completed by RAB Resources.
		 Other companies to have undertaken exploration at Fiery Creek include BHP, MIM, Sumitomo and Rio Tinto. The fine-grained carbonate rocks of the area are considered prospective for Isa style base metal mineralisation and for this reason the large companies have held the ground previously. A list of drilling completed on EPM27879 includes:
		 1975 AMAX EPM 1360/1436 – 5 DD holes for 1335m within the Mellish Park Syncline.
		 1979 BHP EPM 1992 – 8 PERC holes for 243m in the Mellish Park Syncline.
		 1981 Shell EPM 2144 – 40 RAB holes for 200m testing two regional geophysics targets.
		 1981 Newmont EPM 2151 – 16 RAB holes (within EPM) testing INPUT EM anomaly "H" across tenement boundary (W of Piper Nth).
		 1981 BHP EPM 1992 – 1 stratigraphic DD hole for 400m within Mellish Park Syncline.
		 1983 BHP EPM 1992 – 9 regional RAB holes for 306m and 2 PCDD for 76m.
		■ 1992 MIM EPM 7750 – 5 PC holes at Piper for 586m and 6 PC holes at Piper North for 701m.
		■ 1994 MIM EPM 7750 – 2 RC holes for 300m and 2 DD holes for 461m at Piper.
		 2008 Sumitomo Metals EPM 14664 – 1 RC hole for 129m and 3 DD holes for 537.2m at Fiery Creek Prospect and 5 RC holes for 581m and 1 DD hole for 169m at Mellish Park Syncline.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Fiery Creek Project is located in the Western Fold Belt of the Mt Isa Inlier, a world-class metallogenic province. The project area includes rocks of the McNamara Group known to host the Mt Isa, Esperanza, Lady Annie, Lady Loretta, and Mt Oxide mines. • Deposit style being explored for are sedimentary hosted Mt Isa style mineralisation (Cu, Zn, Pb, Ag).
1		 The northern part of the tenement is characterised by folded north-northeast trending sequence of McNamara Group Sediments with the distribution of units controlled by a westerly dipping, north -northeast dipping thrust locally called the Western Thrust.
		 The Piper Fault cuts through a series of northeast trending doubling plunging folds associated with the Lady Lorretta and Esperanza formations, and is one of a series of east- west striking faults which are associated with silicification, quartz veining and late-stage copper mineralisation evident at surface
		15
		15

Prill hole Information Information for all Material drill holes: Information or All Material drill holes: Information or Riceduced Level- Information or Riceduced Level- Information of the information is included in the hole Information of the information is included in the hole Information of the information is incompact in the information is incompact in the basis that the information is incompact in the basis that the information is incompact in the information in incompact in the information is incompact in the information in incompact in the information is incompact in the information in in	Criteria	JORC Code explanation	Commentary
aggregation methods averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of low-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly		understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o down hole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should	
	aggregation	 averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly 	 All significant intersections are reported using a weighted average grade based on a 500ppm (cut-off, minimum 1m interval, maximum internal waste 1m.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drilling is oriented as close to perpendicular to mineralisation where possible based on surface outcrop and interpreted dip and strike . There is not enough information to confirm the relationship between mineralisation and drill hole angle and as such the true width is not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Please refer to the accompanying document for figures and maps for locations of drill hole collars and distribution of associated downhole intersections.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Public reporting of exploration results by Aruma and past tenement holders and explorers are considered balanced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Historical data used in this cross-sections and plans has been referenced and documented in the main section of this announcement
5		
		17

Criteria	JORC Code explanation	Commentary
	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Geological mapping Further geophysical re-evaluation and interpretation of data Addition mapping and Surface sampling construction of 3D Geological model
		18